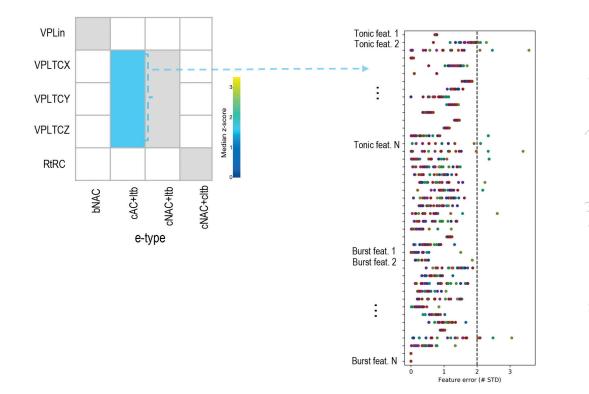

Blue Brain Blue PyMM

Blue Brain Python Cell Model Management - a tool to test morpho-electrical cell model combinations

Blue Brain Python Cell Model Management (BluePyMM) checks the viability of every morphology-electrical combination used in a network simulation. It does this by verifying that the biophysical electrical models (e-models) associated with a certain morphology produces voltage traces that agree with experimental data.

E-models can be obtained using BluePyOpt by data-driven model parameter optimization. Developing e-models can take a lot of time and computing resources. Therefore, these models are not reoptimized for every morphology in the network. Instead we want to test if an existing e-model matches that particular morphology 'well enough' – to a satisfactory standard.


This process is called Model Management (MM). It takes as input a morphology release, a circuit recipe and a set of e-models with some extra information. Next, it finds all possible (morphology, e-model-combinations (me-combos)) based on e-type, m-type, and layer as described by the circuit recipe, and calculates the scores for every combination. Finally, it writes out the resulting accepted me-combos to a database, and produces a report with information on the number of matches.

BluePyMM provides the user with a tool to run test protocols in parallel on a very large set of models on cluster computers with the ability to continue interrupted jobs.

Software Adopters

The Blue Brain Project uses BluePyMM to build neocortical and thalamic network models.

BluePyMM used for modelling the Thalamus

BluePyMM is used by the group of Prof. Michele Migliore within the context of the Human Brain Project to build a hippocampal network model.

"The BluePyMM is quickly becoming for my lab an instrumental tool in implementing a morphologically and biophysically accurate model circuit of the hippocampus, and it represents a fundamental step to automatically test and validate the electrophysiological properties of the huge number of cells composing the circuit"

Prof. Michele Migliore, CNR-IBF

About EPFL's Blue Brain Project

The aim of the EPFL Blue Brain Project, a Swiss brain research initiative founded and directed by Professor Henry Markram, is to establish simulation neuroscience as a complementary approach alongside experimental, theoretical and clinical neuroscience to understanding the brain, by building the world's first biologically detailed digital reconstructions and simulations of the mouse brain.

BluePyMM is available under Lesser GNU Public License, at: github.com/BlueBrain/BluePyMM

It can be used on all systems that can run Python and the NEURON simulator. Support is also available using a chat channel: gitter.im/BlueBrain/BluePyMM

For more information on BluePyMM, please contact:

Jean-Denis Courcol Section Manager, Neuroscientific Software Engineering Blue Brain Project jean-denis.courcol@epfl.ch

For technical information on BluePyMM or to request a demonstration, please contact:

Werner Van Geit Group Leader, Cells Blue Brain Project werner.vangeit@epfl.ch

github.com/BlueBrain/BluePyMM

🖈 portal.bluebrain.epfl.ch

https://www.epfl.ch/research/domains/bluebrain/

